

AIMS Program

Microturbine & Industrial Gas Turbine Peer Review Meeting

March 12-14, 2002 Hyatt Fair Lakes Fairfax, VA

Program Overview

OBJECTIVE

The objective of the AIMS program is to develop the next generation microturbine system that will advance the current generation system into a more efficient, cost effective, and environmentally friendly system. The resulting system will be designed such that it addresses both the current and emerging distributed generation markets.

CTQ'S

- 40% Efficient Design
- 175 kW Output with growth to +250 kW
- ≤ 10 ppm NOx on Natural Gas
- ≤ 10 ppm CO on Natural Gas
- ≤ \$500/kW unit cost
- 11,000 hour maintenance interval
- 45.000 hour life

SCHEDULE Milestones/Deliverables	Scheduled Completion Date	Status (complete, in progress, planned,)
 Subtask A – Market Study Task 1 – Conceptual Design Subtask B – Business Plan Task 2 – Component Design Task 3 – System Design Task 4 – Laboratory Evaluation Task 5 – Demonstration 	12-31-00 4-1-01 12-31-02 7-1-03 7-1-03 12-31-03 9-29-04	Complete Complete Planned In Progress In Progress Planned Planned

PROFILE BUDGETS

Planned Total \$4.7M + Cost Share Project Start/End 10/00 - 9/04

PROJECT TEAM

GE Global Research

GE Power Systems (GEPS)

GE Industrial Systems (GEIS)

Concepts NREC

Turbo Genset Company

Kyocera Industrial Ceramics Corp.

Onsite Energy Corporation

Oak Ridge National Laboratory

PROJECT STATUS - Red/Yellow/Green

Status

- Many tasks dependent on Vendors
- Budgetary concerns

PATENTS/PAPERS

- 1 ASME Papers to be presented in June
- Over 20 Patent Disclosures Filed

Program Team

AIMS Program Task 1 Subtask A Task 4 Task 5 **Technology Concepts Market Study Laboratory Evaluation** Commercial **Demonstration Onsite Energy/ GEPS GE Research GE Research** - Market Study - Thermal analysis of cycle - Integration of developed GE Research / GEPS/ Site TBD - Advanced technology screening components into the new - 4000 hour demonstration of developed microturbine system **GE Research /PSEC/GEIS** • - Evaluation of the system in a system - Control system definition laboratory environment Subtask B Task 2 Task 3 **Business Plan Component Development Systems Design GE Research/ Concepts NREC/** GE Research/ GEPS **GEPS GEPS** - System integration issues - Business plan based on - Component development & testing

GE Research/ GEIS/ Turbo Genset

- Advanced material characterization - Ceramic testing for database

- Power electronics development

GE Research/ Kyocera/ ORNL

- Advanced material components

- High speed alternator development

- Acoustic considerations

GE Research/ GEIS/ GEPS

- Control system development

market analysis, product feasibility and technology maturity

AIMS Program Matrix & Milestones

Task – Conceptual Design

TASK FOCUS:

- Determine system thermal design to achieve the 40% efficiency target
- Reduce the operating temperature of the cycle to "metallic" levels

this process allows for proof of component technologies prior to the introduction of advanced materials

Task - Design Process

PROCESS:

Problem Solving

Task – Turbo Machinery

ACTIVITIES:

- Component Design Targets Set
- 1D Analysis (Flow & Stress)
- Rotor Dynamic Analysis
- Materials Down Selection
- 1st Pass 3D Analysis (Flow & Stress)
- Analysis of Results
- Modifications/ Redesigns
- Stationary Component Design & Analysis

- Final 3D Analysis (Flow & Stress)

- Final Rotor Dynamic Analysis

- Experimental Evaluation
- Integration with MT System
- Evaluation

Radial Inflow Turbine

Silo Style Combustor

Task - Combustion

ACTIVITIES:

- Component Design Targets Set

- Fuel & Air Flow Analysis to Achieve Emissions Targets

- Evaluation of Existing GE Hardware

- Thermal & Assembly Analysis

- Fuel Delivery System Requirements

- "Similar To" Experimental Analysis

- Lab Evaluation

Breach Loaded

- Integration with MT System

- Evaluation

4-Cup Premixed Combustor System w/ Diffusion Circuit

Task - Recuperator

TASK FOCUS:

Infuse GE expertise of gas turbine heat transfer into existing recuperator technology to build a better system.

ACTIVITIES:

- Performance Design Targets Set
- Reverse Engineered Existing Recuperator Validated with Experiments
- Preliminary Sizing of Recuperator
- Potential Heat Transfer Enhancement Technologies Identified
- Design Impact of Technologies Determined
- Capable Vendors Identified

- Initial Hardware Procurement
- New Technology Design Incorporation
- New Technology Sample Procurement
- New Technology Sample Experimental Evaluation
- New Technology Prototype Procurement
- Experimental Evaluation

Task - Recuperator

Dimple Diameter = 0.39"

Tube Diameter = 1.50"

Task – Power Electronics & Control

PE ACTIVITIES:

- Specifications & Topology Tradeoffs
- Generator Vendor Selection
- Power Electronic Simulations
- Auxiliary System Design
- FMEA
- Component Fabrication
- System Tests
- Integration w/ Turbine System

CONTROLS ACTIVITIES:

- Control Requirements
- System Simulations
- Platform Selection
- Algorithm & Code Development
- Communication & HMI Development
- Hardware Procurement
- Integration w/ Turbine System

Task – Advanced Materials

Program Activities for Ceramic Components in AIMS Microturbine

TECHNOLOGY CHALLENGES:

- Temperature: 1100+°C
- Strength degradation
- Surface recession due to water vapor
- Impact FOD damage
- Probabilistic life and reliability

Courtesy

Kyocera

- Attachments
- Shrinking number of suppliers
- Complex shapes
- Cost

Microturbine design for best use of ceramics

- Select components for highest payoff and lowest risk
- Combustor, scroll, nozzle, rotor, recuperator

Ceramic property database for chosen materials

- Concentrate on silicon nitrides
- Supplement ORNL database

Probabilistic design capability for ceramic component

- NASA CARES/LIFE
- Honeywell CERAMIC/ERICA
- GE extensions

Demonstration of ceramic component

- Fabricate prototype parts
- Test in baseline microturbine

Incorporation of ceramic components requires innovative ceramic application engineering

Task – Advanced Materials

MATERIAL DATABASE AND TEST PLAN:

Currently concentrating on Kyocera SN282 Limited design data currently available GE testing in collaboration with ORNL Prioritized needs for database expansion

- Tensile fast fracture
- Strength degradation after oxidation
- Surface recession and strength degradation in moist environments

Silicon nitride obtained for first round of testing Initial specimens in preparation

Exposure tests in high pressure/ high velocity burner rig

- Rig at GE Global Research
- Developed for GE/DOE CMC program
- Capable of exposures at:
 - 1200 °C
 - 125 m/s
 - 9 atmospheres total pressure
 - 1 atmosphere of water vapor
- Post test evaluation:
 - Surface recession rate
 - Strength degradation (flexure)
- · Test planning in progress

Fast Fracture Tensile Testing

- Room and elevated temperatures
- Testing at ORNL
- Fractography for censored data analysis
- "Large" specimen size to reduce confidence bounds on predicted component reliability

Task – Advanced Materials

Build on CARES/LIFE Capability for Probabilistic Design

CURRENT CARES/LIFE CAPABILITIES:

- Weibull probabilistic analysis in multiaxial stress states
- Estimation of Weibull and fatigue parameters
- Confidence bounds on single flaw populations
- Censored data analysis for multimodal flaw populations
- Integration with component finite element analysis
- Prediction of component life and probability of failure

GE ADDITIONS:

Parameter estimation for pooled data

- Weibull parameters
- Censored data for multimodal flaw populations
 Confidence intervals with censored data
- Weibull parameters
- Component fast fracture reliability
 Code to execute and integrate with CARES/LIFE

Improved probabilistic capability for ceramic design

Summary

PROGRAM:

- Team has made significant progress in all areas
- Design is nearly complete
- Moving into procurement phase
- Preparing for experimental evaluation of the technology

TOP RISKS:

- Demonstration Milestones Dependent on Vendor Deliveries

- Program funding limits result in schedule delay
- Component Performance Shortfall

ABATEMENTS:

- Extensive Vendor evaluationsClose and consistent contact with Venders
- Close monitoring & prioritization of activities
- Rigorous engineering analysis

Program Growth Opportunities

OPPORTUNITY:

Expand program scope to demonstrate a series of product enhancements to address additional market opportunities.

<u>ADDED ACTIVITIES:</u>

- Opportunistic Fuel Ready
- Multi-Source Power Electronics
- True Autonomous Control
- Advanced Turbo Equipment Materials
- Advanced Recuperators
- Rigorous Lab & Field Evaluation

SCHEDULE:

Increase Timeline by 2 years to Accommodate Additional Scope

Expanded Program Address More Technology Issues, Risks & a Larger Market Potential